YD3u-20MR-DC24(透明盒 PLC)

一、规格:

内部元件 PLC 类型	
输入电源	DC24V
程序步数	程序容量8000步,可在线监视。3个通信口:2个RS232(8芯通信口为FX3u协议,改变拨码开关5,6的状态可改变该通信口波特率;白色通信座(RS232,RS485)通信协议可通过修改D8120来改变,可设为FX3u、MODBUSRTU、RS指令),RS485与白色通信口RS232共用一个串口,同时只能用一个,该通信口可用IVRD,IVWR指令与变频器通信。1个CAN总线用于主机间自动通信。
输入点X元件	X0-X13, DC24 输入, 低电平有效。其中 X0-5 为高速计数输入口。X0-1 为 100K, X2-5 为 5K。
输出点Y元件	Y0-Y7, 其中 Y0-3 为高速输出口(100K, 需拆掉继电器), Y4-7 为继电器输出, 电流最大 5A。
中间继电器M	MO-M3071, 掉电保存范围可设 MO-M1023
步进点S	S0-1023, 掉电保存范围可设 S0-S1023
100Ms 定时器	T0-T199, 累积型掉电保存 T184-T199
10Ms 定时器	T200-T249, 累积型掉电保存 T246-T249
1Ms 定时器	T250-T383, 其中 T250-255 为累计型
16 位计数器	CO-C199, 掉电保存 C100-199
32 位计数器	C200-C219, 掉电保存 C220-C234
32 位高速计数器	C235-255; C235-240 为单相计数器,不倍频; C241-240 为单相计数器,2倍频;C247-249 为双相计数器,不倍频;C250-252 为双相计数器,2倍频;C253-255 为双相计数器,4倍频;
寄存器 D	DO-D7999, 掉电保存范围可设 DO-7999,默认掉电保存范围 D200-D7999
间接寻址指针 V,Z	V0-7, Z0-7
P子程序跳转号	P0-63
I中断	X0-5 外中断。定时器中断 (1MS 为单位)。计数器中断。

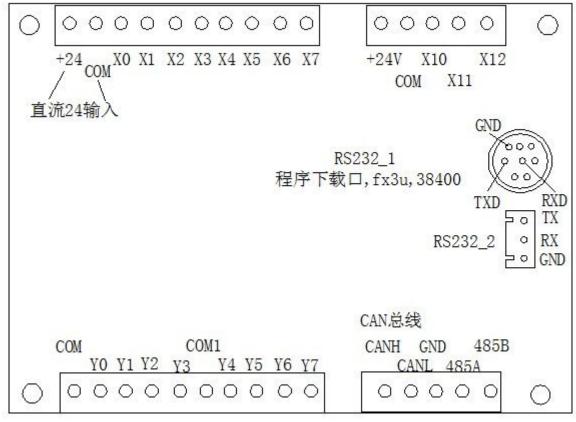
二、基本指令

助记符	功能
LD	运算开始常开接点
LDI	运算开始常闭接点
LDP	上升沿检出运算开始
LDF	下降沿检出运算开始
AND	串联常开接点
ANI	串联常闭接点
ANDP	上升沿检出串联连接
ANDF	下降沿检出串联连接
OR	并联常开触点
ORI	并联常闭触点
ORP	上升沿检出并联连接
ORF	下降沿检出并联连接
ANB	回路块之间串联连接
ORB	回路块之间并联连接
OUT	线圈输出驱动
SET	线圈动作保持
RST	解除线圈动作保持
PLS	线圈上升沿输出
PLF	线圈下降沿输出
ALT	交替输出
MC	公共串连接点用线圈指令
MCR	公共接点解除指令
MPS	运算存储
MRD	存储读出
MPP	存储读出与复位
INV	运算结果取反
END	程序结束
STL	步进梯形图开始
RET	步进梯形图结束
CALL	调用子程序
SRET	子程序返回

三、应用指令

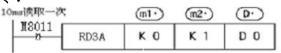
_ ^	118	.1 64
分类	指令	功能
不	助助	
	记	
	符	
程	CJ	条件跳转
序流	CALL	子程序调用
程	SRET	子程序返回
	FEND	主程序结束
	FOR	循环范围开始
	NEXT	循环范围终了
传送	CMP	比较
与	ZCP	区域比较
比较	MOV	传送
TX.	CML	国 倒转传送
	BMOV	一并传送
	FMOV	多点传送
	XCH	交换
	BCD	BCD转换
	BIN	BIN转换
四则	ADD	BIN加法
逻	SUB	BIN减法
辑运	MUL	BIN乘法
算	DIV	BIN除法
	INC	BIN加1
	DEC	BIN減1
	WAND	逻辑字与
	WPR	逻辑字或
	WXOR	逻辑字异或
	NEG	求补码
循环	ROR	循环右移
移	ROL	循环左移
位	RCR	右移位
	RCL	左移位
	SFTL	位左移
L	SFTR	位右移

分类	指令助记符	功能
数	ZRST	批次复位
数据处理	MEAN	平均值
理	FLT	BIN 整数→2 进制浮点数转换
	GRY	BIN 整数→格雷码转换
	GBIN	格雷码→BIN 整数
高	DHSCS	高速比较置位
高速指今	DHSCR	高速比较复位
令	SPD	脉冲密度,还可以测脉冲宽度(脉冲间隔时间)
	PLSY	脉冲输出
	PLSV	带方向控制脉冲输出
	PWM	脉宽调制, 0-32767us
	PLSR	带加减速的脉冲输出
	DRVA	绝对位置控制
	DRVI	相对位置控制
	ZRN	原点回归,只支持 16 位指令
	DSZR	带 DOG 搜索的原点回归
	DVIT	中断定位
	ABSD	凸轮控制 (绝对方式)


Lel.	RS	串行数据传送
外围设备	ASCI	HEX-ASCII 转换
设名	HEX	ASCII-HEX 转换
₩ SER	CCD	和码
ER ER	CRC	CRC 校验
	IVRD	读取变频器或仪表的数据
	IVWR	写数据到变频器或仪表
	PID	PID运算
	SEGD	BCD 转 7 段码数码管
浮	ECMP	2 进制浮点数比较
浮点数	EZCP	2 进制浮点数区间比较
剱	EBIN	10 进制浮点数-2 进制浮点数转换
	EADD	2 进制浮点数加法
	ESUB	2 进制浮点数减法
	EMUL	2 进制浮点数乘法
	EDIV	2 进制浮点数除法
	INT	2 进制浮点数-BIN 整数转换
	SIN	浮点数 SIN 运算
	TAN	浮点数 TAN 运算
	COS	浮点数 COS 运算
	ASIN	浮点数 SIN-1 运算
	ATAN	浮点数 TAN-1 运算
	ACOS	浮点数 COS-1 运算
	EXP	2 进制浮点数指数运算
	LOGE	2 进制浮点数自然对数运算
	LOGE10	2 进制浮点数常用对数运算
	SWAP	上下字节变换

方	SER	数据查找
方便指令	ALT	交替输出
有 令	RAMP	斜坡信号
	BON	ON 位判定
	SUM	ON 位数
	ANS	报警置位
	ANR	报警复位
	HOUR	计时仪
	TCMP	时钟数据比较
	TRD	时钟数据读出
	TWR	时钟数据写入
接	LD=	(S1=(S2)
接点指令	LD>	(S1)>(S2)
指	LD<	(S1)<(S2)
7	LD♦	$(S1) \neq (S2)$
	LD≦	$(S1) \leqslant (S2)$
	LD≧	$(S1) \geqslant (S2)$
	AND=	(S1=(S2)
	AND>	(S1)>(S2)
	AND<	(S1) < (S2)
	AND♦	$(S1) \neq (S2)$

AND≦	(S1)≤(S2)
AND≧	$(S1) \geqslant (S2)$
OR=	(S1=(S2)
OR>	(S1)>(S2)
OR<	(S1) < (S2)
OR♦	$(S1) \neq (S2)$
OR≦	(S1)≤(S2)
OR≧	(S1) ≥ (S2)


注:支持32位指令与脉冲执行型指令P。

四、YD3u-20MR-DC24接线图:

五、主机带模拟量输入输出说明:

1、模拟量读取指令:

模拟量模块的模拟量输入值的该取指令。

ml: 模块号, 主机设为K0

m2: 模拟量输入通道号

K0- K1

D: 读取数据 瞬时值保存到DO 保存读取自模拟量模块的数值。

PID 运算指令说明:

此指令用于进行 PID 控制的 PID 运算程序。

S1: 设定的目标值:

S2: 当前值(反馈回来的值);

S3: PID 控制参数,占用 S3 开始的连续 9 个 D 寄存器。S3 为 PID 通道 号;S3+1 为比例系数 KP;S3+2 为积分系数 KI;S3+3 为微分系数 KD;S3+4 为误差系数 KE,只有当误差大于此值才进行 PID 处理;S3+5 输出上限值 PMAX;S3+6 输出下限值 PMIN;S3+7 备用;S3+8 备用;D: 控制值输出;六、CAN 主机间自动通信:

	数据交换区	站号	数据交换区	站号	数据交换区
站号					
0	D3500-3515	8		16	
1	D3516-3531	9		17	
2	D3532-3547	10		18	
3	D3548-3563	11		19	
4	D3564-3579	12		20	
5	D3580-D3595	13		21	
6		14		22	
7		15		23	

CAN 通信例: LD M8002 称 //上电执行一次 //CAN 末根 通信

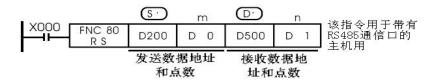
SET M8181 //CAN 主机通信允

MOV K0 D8121 //设站号为 0

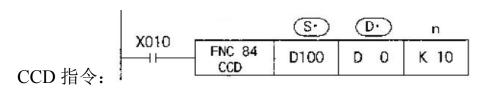
站号 0 的 PLC 只要向 D3500-3515 写入数据, 其它站号的 PLC 只要读取自身 D3500-3515 的数据就等于读站号 0 的 D3500-3515 数据。站号 0 的 PLC 读取自身 D3516-3531 的数据就等于读取站号 1 的 D3516-3531 数据。

CAN 通信时要把主机间的 CAN_H 与其它 PLC 的 CAN_H 相连, CAN_L 与其它 PLC 的 CAN_L 相连, 传输距离远时,要接通 PLC 板上的终端电阻,对应的拨码开关(左上角 2 位的那个)打在 ON 位。

九、拨码开关说明:


	OFF	ON
拨码开关位		
状态		
1号	厂家调试用	
2号(开关量与模拟量切换时底板上的	X16,X17 做为开关量输	X16,X17 做为模拟量输
短路插要相对应移动)	入	入
3号	PLC 运行	PLC 停止
4 号		
圆通信口波特率改变	5号	6号
9600	OFF	OFF
19200	ON	OFF
38400	OFF	ON
115200	ON	ON

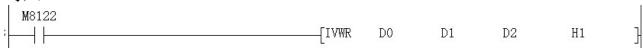
十、串行数据传输:


特殊寄存	说明	特殊继电器	说明	
器				
白色3脚R	S485 通信口(白色 3 脚 RS23	2口)同一时间只	能使用1个	
D8120	RS485 通信格式定义	M8121	数据发送时置位,发送完毕自动复位	
D8121	RS485 通信站号设定	M8122	发送请求,当M8122置位时,一旦通信口有空闲就开	
			始发送数据,开始发送后自动复位	
D8122	发送数据剩余数	M8123	数据接收完毕标记,当接收到一帧数据后该位自动	
			置位,用户应在接收数据后复位该位	
		M8124	数据接收中置位,接收完数据复位	
M8129: 通信超时标记,当主机发出命令,从机在 D8129 时间内没有回应,M8029 会置位				

D8120 的各位对应的通信参数如下:

位号	名称	内容			
		0 (位 OFF)	1 (位 ON)		
ВО	数据长	7位	8位		
B1	奇偶位	b2 b1			
B2		(0,0): 无校验			
		(0, 1): 奇数 ODD			
		(1, 1): 偶校验 EVEN			
В3	停止位	1位	2位		
B4	传送速率	b7 b6 b5 b4 b7	b6 b5 b4		
В5	bps	{0, 0, 1, 1}: 300 {0	, 1, 1, 1}: 4800		
В6		$\{0, 1, 0, 0\}$: 600 $\{1, 0, 0, 0\}$: 9600			
В7		{0, 1, 0, 1}: 1200 {1, 0, 0, 1}: 19200			
		$\{0, 1, 1, 0\}: 2400 \{1, 0, 1, 0\}: 38400$			
В8	起始符	无	有 (D8124)		
В9	终止符	无	有 (D8125)		
B10	不可使用				
B11					
B12	通信协议	B15 b14 b13 b12			
B13		{0, 0, 0, 0}: 三菱 FX2N 协议 (从机)			
B14		{0, 1, 0, 0}: MODBUS RTU (从机)			
B15		$\{1, 0, 0, 0\}$: MODBUS I	RTU (主机, IVRD, IVWR 指令)		
		{1, 1, 0, 0}: 自由通	信(RS 指令,用 CCD 校验)		

- ●数据的传送格式可以通过后面所述的特殊数据寄存器D8120设定。 RS指令驱动时即使改变D8120的设定,实际上也不接受。
- ●在不进行发送的系统中,请将数据发送点数设定为"KO"。 或在不进行接受的系统中,接收点数设定为"KO"。



以 S 指定的元件为起始的 n 点数据,将其各位数据的总和与 CRC 校验数据存储在 D.与 D.+2,D.+3。此例子和校验放在 D0 中, CRC 校验放在 D2, D3 中。十一、与变频或仪表通信:

读取:

D0 为读取的站号(高 8 位)和命令码(低 8 位),如 D0 的值为 H103,就是站号 1,读命令 3。D1 为要读取的数据地址,D2 为接收变频或仪表返回的数据首地址,接收到数据,如是通道 0,M8123 会置位。H1,高 8 位通道,低 8 位读取个数。通过通道 0(485 通道),读取 1 个数据。假如位 H101,就是通过通道(RS232 通道)1 读取 1 个数据。

写入:

D0 为写入的站号(高 8 位)和命令码(低 8 位),如 D0 的值为 H106,就是站号 1,写单个数据命令 6。D1 为要写入的数据地址,D2 为写入变频或仪表数据的首地址。H1,高 8 位为通道,低 8 位写入个数。通过通道 0(485 通道),写入 1个数据。假如是 H101,就是通过通道(RS232 通道)1 写入 1 个数据。写入完毕 M8122 自动复位。

十二、高速计数: SPD 指令(支持 X0-5),如果编码器一圈是 360 个脉冲,2 倍频就可得到 720 个脉冲,4 倍频的话就可得到 1440 个脉冲,从而提高编码器的分辨率。

计数输入	单相计数器	向上向下计	计数输入	单相2倍频	向上向下计
	号	数方向开关		计数器号	数方向开关
X0	C235	M8235	X0	C241	M8241
X1	C236	M8236	X1	C242	M8242
X2	C237	M8237	X2	C243	M8243
Х3	C238	M8238	Х3	C244	M8244
X4	C239	M8239	X4	C245	M8245
X5	C240	M8240	X5	C246	M8246

计数输入	双相2倍频	向上向下计	计数输入	双相 4 倍频	向上向下计
	计数器号	数方向(只		计数器号	数方向(只
		读)			读)
X0 (A相)	C250	M8250	X0 (A 相)	C253	M8253
X1 (B相)			X1 (B相)		
X2 (A相)	C251	M8251	X2 (A 相)	C254	M8254
X3 (B相)			X3 (B相)		
X4 (A 相)	C252	M8252	X4 (A 相)	C255	M8255
X5 (B相)			X5 (B相)		

C247 (X0, X1), C248 (X2, X3), 249 (X6, X7) 为不倍频的双相计数器。十三、高速脉冲输出与脉宽调制: 支持 4 路脉冲输出 Y0-3 (PLSY, PLSV, PLSR, DRVA, DRVI, ZRN, DSZR, DVIT) 或 2 路脉宽调制 Y0-1 (PWM), 频率 100K。

脉冲	输出脉	输 出标记	脉冲禁 止	最低输 出频率	加减速时间	DSZR, DVIT	DVIT 中 断输入 X	原点回 归速度	原点回归爬行	ZRN 爬 行脉冲
	冲数					方向	地 址 0-17		速度	数
YO	D8132	M8147	M8141	D8144	D8145	M8080	D8080	D8220	D8090	D8072
Y1	D8134	M8148	M8142	D8146	D8147	M8081	D8081	D8221	D8091	D8073
Y2	D8136	M8149	M8143	D8148	D8149	M8082	D8082	D8222	D8092	D8074
Ү3	D8138	M8150	M8144	D8150	D8151	M8083	D8083	D8223	D8093	D8075

十四、中断说明:

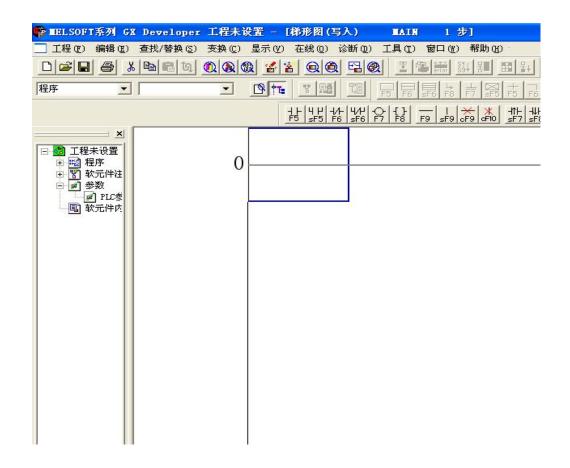
1, 外中断支持 X0-X5, 中断号如下表:

	上升沿	下降沿	中断禁止
XO	10	I1	M8050
X1	I100	I101	M8051
X2	1200	1201	M8052
Х3	1300	I301	M8053
X4	I400	I401	M8054
X5	1500	I501	M8055

- 2, 定时器中断指针为 I600, 中断禁止为 M8056。中断时间范围 I601 (1MS)-I699 (99MS)。
 - 3, 计数器中断指针

指针号	中断禁止
I10	M8059
120	
130	
I40	
I50	
160	

十五、第三方编程软件说明:可以兼容编程软件 GX Developer7.8 或8.52、8.86 版本,创建新工程:


设置程序步为8000步:

在线、传输设置、设定下载的通信口及波特率:

进入梯形图编辑界面,编写你的程序:

下载程序:选择程序,按执行开始下载

